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Abstract: Convolutional neural networks (CNNs) have exhibited excellent performance in hyper-
spectral image classification. However, due to the lack of labeled hyperspectral data, it is difficult to
achieve high classification accuracy of hyperspectral images with fewer training samples. In addition,
although some deep learning techniques have been used in hyperspectral image classification, due
to the abundant information of hyperspectral images, the problem of insufficient spatial spectral
feature extraction still exists. To address the aforementioned issues, a spectral–spatial attention
fusion with a deformable convolution residual network (SSAF-DCR) is proposed for hyperspectral
image classification. The proposed network is composed of three parts, and each part is connected
sequentially to extract features. In the first part, a dense spectral block is utilized to reuse spectral
features as much as possible, and a spectral attention block that can refine and optimize the spectral
features follows. In the second part, spatial features are extracted and selected by a dense spatial
block and attention block, respectively. Then, the results of the first two parts are fused and sent to
the third part, and deep spatial features are extracted by the DCR block. The above three parts realize
the effective extraction of spectral–spatial features, and the experimental results for four commonly
used hyperspectral datasets demonstrate that the proposed SSAF-DCR method is superior to some
state-of-the-art methods with very few training samples.

Keywords: hyperspectral image classification; attention feature fusion; deformable convolutional
residual; few training samples

1. Introduction

Hyperspectral images (HSIs) are three-dimensional images captured by some aerospace
vehicles that carry hyperspectral imagers. Each pixel of an image contains hundreds of
units of reflected information of different bands, which makes such images suitable for
many practical applications, such as military target detection, mineral exploration, and
agricultural production ([1–4], etc.) Much excellent research has been performed in the
field of hyperspectral image analysis and processing, including in the classification of HSIs.
Spectral information is an effective tool for monitoring the Earth’s surface. Different sub-
stances have different spectral curves. The classification of HSIs is intended to assign each
pixel to a certain category based on its spatial and spectral characteristics. However, there
are still two problems in HSI classification: (1) hyperspectral datasets are usually small,
and training based on small samples easily to leads to overfitting, which is not conducive
to the generalization of the model; (2) due to the high spatial and spectral resolution of
HSIs, the problem of insufficient spatial spectral feature extraction still exists. The ability
to make full use of the spatial and spectral information contained in HSIs is the key to
improving the classification accuracy.
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In the early stages of HSI classification, most methods focused on extracting the
spectral features of HSIs for classification [5]. The support vector machine (SVM) [6] and
multinomial logistic regression [7] are powerful tools for the task of HSI classification.
Although different substances can typically be distinguished according to their spectral sig-
natures, HSI classification based on spectral information alone is often not accurate enough.
Then, some classification methods (such as superpixel-based sparse representation [8,9]
or multiple kernel learning [10]) combined with spatial information were proposed in
order to improve the performance of the classification of hyperspectral images. Although
spatial–spectral information fusion can improve the accuracy of HSI classification, effective
spatial feature extraction, spectral feature extraction, and spatial–spectral information
fusion still have great challenge.

The key step of object-based image analysis (OBIA) is to generate image objects,
which are generated by image segmentation. In classification, more use is made of the
geometric information of objects and the semantic object, texture information and topo-
logical relationship between image objects, rather than just the spectral information of
a single object. Object-based HSI classification technology is also one of the important
categories in spectral spatial classification technology, because they play an important
role in this field [11,12]. Because OBIA technology is more suitable for image analysis
with high spatial resolution, the performance of traditional pixel-based and object-based
image classification technology may be slightly worse for hyperspectral data sets with
low spatial resolution. Convolutional neural networks (CNNs) can extract image features
automatically and achieve higher classification performance. It is widely used in natural
language processing (such as information extraction [13], machine translation [14], question
answering system [15]) and computer vision (such as image classification [16], semantic
segmentation [17], object detection [18]), etc. [19]. In recent years, CNNs have also been
widely used for HSI classification. According to the convolution mode of the convolution
kernel, HIS classification models based on CNN can be divided into three categories: 1D-
CNN, 2D-CNN, and 3D-CNN. Obviously, the 1D-CNN models only rely on extracting
spectral features to achieve HSI classification. Hu et al. proposed a five-layer 1D-CNN
model to directly classify hyperspectral images in the spectral domain [20]. In [21], Li et al.
introduced a novel pixel-pair method to significantly increase such a number. For a testing
pixel, pixel-pairs, constructed by combining the center pixel and each of the surrounding
pixels, are classified by the trained deep 1D-CNN.

2D-CNN methods are applied to HSI classification tasks, and most of them can obtain
better results than the methods using spectral features alone, which directly extract global
information in the spectral–spatial and make full use of spatial features. For instance, fang
et al. proposed a deep 2D-CNN model, named deep hashing neural network (DHNN), to
learn similarity-preserving deep features (SPDFs) for HSI classification. First, the dimen-
sionality of the entire hyperspectral data is reduced, and then, the spatial features contained
in the neighborhood of the input hyperspectral pixels are learned by the two-dimensional
CNN [22]. In [23], a new manual feature extraction method based on multi-scale covariance
map (MCM) is proposed and verified by the classical 2-D CNN model. Chen et al. put
forward a new feature fusion framework based on deep neural network (DNN), which
used 2D-CNN to extract spatial and spectral features of HSI [24]. DRCNN is also a classic
2D-CNN model. This method exploiting diverse region-based inputs to learn contextual
interactional features is expected to have more discriminative power [25]. Zhu et al. pro-
posed a deformable HSI classification network (DHCNet), which introduced deformable
convolution that could be adaptively adjusted according to the complex spatial context
of HSI and applied regular convolution on the extracted deformable features to more
effectively reflect the complex structure of hyperspectral image [26]. Cao et al. proposed to
formulate the HSI classification problem from the perspective of a Bayesian and then used
2D-CNN to learn the posterior class distributions using a patch-wise training strategy to
better use the spatial information, and further considered spatial information by placing
a spatial smoothness prior on the labels [27]. Song et al. proposed a 2D-CNN—deep
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feature fusion network (DFFN), which uses low-, middle- and high-level residual blocks
to extract features, takes into account strongly complementary but related information
between different layers, and integrates the outputs of different layers to further improve
performance [28]. S-CNN is also a good example of 2D-CNN, which directly extracts deep
features from hyperspectral cubes and is supervised with a margin ranking loss function,
so it can extract more discriminant features for classification tasks [29].

Compared with 1D-CNN and 2D-CNN models, 3D-CNN model is more suitable for
processing three-dimensional HSI classification problem; it not only can extract features of
spectral dimension but also simultaneous implement representation of spatial features, of
which there are also many works that have made excellent research on solving the problem
of small samples of hyperspectral, such as Gao et al., who proposed a new multi-scale
residual network (MSRN) that introduces deep separable convolution (DSC) and replaces
ordinary convolution with mixed deep convolution. The DSC with mixed deep convolution
can explore features of different scales from each feature map and can also greatly reduce
the learnable parameters in the network [30]. Multiscale dynamic graph convolutional
network (MCGCN) is proposed, and it can conduct the convolution on arbitrarily structured
non-Euclidean data and is applicable to the irregular image regions [31]. Two branches are
designed in DBDA networks, and the channel attention block and spatial attention block
are, respectively, applied to these two branches to capture a large number of spectral and
spatial features of HSIs [32]. According to the different way of feature extraction, 3D-CNN
based HSI classification methods can be divided into two categories: (1) The methods
of using a 3D-CNN to extract spectral-spatial features as a whole; Chen et al. proposed
a deep feature extraction architecture based on a CNN with kernel sampling to extract
spectral–spatial features of HSIs [33]. There are also some 3D-CNN frameworks that do not
rely on any pre-processing and post-processing operations and extract features directly on
the HSI cube [34,35]. (2) The method of extracting spectral spatial features, respectively, and
classifying them after fusion. In [36], a triple-architecture CNN was constructed to extract
spectral–spatial features by cascading the spectral features and dual-scale spatial features
from shallow to deep layers. Then, the multilayer spatial–spectral features were fused to
provide complementary information. Finally, the features after fusion and a classifier were
integrated into a unified network that could be optimized in an end-to-end way. Yang
et al. proposed a deep convolutional neural network with a two-branch architecture to
extract the joint spectral–spatial features from HSIs [37]. In the Spectral Spatial Residual
Network (SSRN), the spectral and spatial residual blocks continuously learn discriminative
features from the rich spectral features and spatial context in the hyperspectral image (HSI)
to improve classification performance [38].

However, due to the similar texture of many spectral bands, the computation of only
using 3D convolution data is particularly heavy, so the ability of feature representation
is relatively poor. Roy et al. proposed that the HybridSN model is a spectral network
that mixes 2D and 3D convolutions. The spectral information and the complementary
information of the spatial spectrum are extracted and combined by 3D-CNN and 2D-CNN,
thus making full use of the spectral and spatial feature maps and overcome the above
shortcomings [39]. Inspired by the HybridSN method and in order to solve the problem of
insufficient spatial spectral feature extraction and overfitting under small samples, in this
paper, spectral–spatial attention fusion with a deformable convolution residual (SSAF-DCR)
network is proposed. Specifically, the contributions of this study are as follows.

(1) This paper proposes an end-to-end sequential deep feature extraction and classifica-
tion network, which is different from other multi branch structures. It can increase
the depth of the network and achieve more effective feature extraction and fusion, so
as to improve the classification performance.

(2) We propose a new way to extract spectral–spatial features of HSIs, i.e., the spectral
and low-level spatial features of HSIs are extracted with a 3D CNN, and the high-level
spatial features are extracted by a 2D CNN.
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(3) For the extracted spatial and spectral features, a residual-like method is designed for
fusion, which further improves the representation of spatial-spectral features of HSIs,
thus contributing to accurate classification.

(4) In order to break the limitations of the traditional convolution kernel with a fixed
receptive field for feature extraction, we introduce a deformable convolution and
design the DCR module to further extract the spatial features; this method not only
adjusts the receptive field but also further improves the classification performance
and enhances the generalization ability of model.

The remainder of this paper is arranged as follows. The details of the proposed method
are described in Section 2. In Section 3, the datasets, experimental setup, and experimental
results and analysis are described. In Section 4, some conclusions are presented.

2. Methodology

In this section, firstly, the overall framework of the proposed SSAF-DCR network,
which consists of three parts, is introduced. The first part is used for spectral feature
extraction and selection in order to highlight important spectral features. The second
part is used to input the extracted features of the first part into a deep network and then
fully extract the spatial features of an HSI. In the third part, a DCR block is designed
to adapt to unknown changes and adjust the receptive field, which can further extract
spatial features. In addition, a series of optimization methods are adopted to prevent the
overfitting phenomenon and to improve the accuracy.

2.1. The Overall Structure of the Proposed Method

The proposed SSAF-DCR network consists of three parts, which are shown in Figure 1.
Motivated by the basic structure of the DenseNet [40] and the idea of spectral feature mul-
tiplexing, two dense blocks with three convolutional layers are utilized to extract spectral
features and spatial features, respectively. First, a dense block with three convolutional
layers is used to realize the deep extraction of spectral features. Then, in order to effectively
select the important features from the large amount of spectral information, we introduce
the channel attention mechanism from the DANet [41] to obtain more effective spectral
features. In the second part, similarly to the spectral feature extraction, the feature maps
that contain the effective spectral features are sent to another dense block, and the spatial
attention mechanism is used to implement the spatial neighborhood feature extraction.
In the third part, the feature maps obtained in the first two parts are added element by
element. After dimensionality reduction, the results are input into the DCR block to further
extract the high-level spatial features. Finally, the extracted high-level features are fed into
a global average pooling (GAP), fully connected layer, and linear classifier to obtain the
classification results.

In this study, the proposal of the DCR block is motivated by DHCNet [26] and by
residual networks (ResNets) [42]. The DCR block is generated by combining a deformable
convolution layer with a traditional convolution and residual branch. Part D of this section
provides a comparison of the results of the classification accuracy and the numbers of
parameters with and without the DCR block. This block is utilized to further extract
high-level spatial features, which can not only extract spatial features more fully but also
prevent the classification accuracy from decreasing with increases in the network depth.

2.2. Dense Spectral and Spatial Blocks

As is commonly known, in recent years, the improvement of convolution neural net-
works was mainly through the adoptions of ways of widening or deepening the networks.
The disappearance of the gradient is the main problem when a network is deepened. Dense
blocks not only alleviate the gradient disappearance phenomenon but also reduce the
number of parameters. Dense blocks also allow features to be reused by establishing dense
connections between all of the previous layers and later layers.
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Figure 1. The overall framework of the proposed SSAF-DCR network.

Suppose that an image x0 is propagated in a convolutional network. l represents the
number of the layer, and xl represents the output of layer l. A traditional feed-forward
network takes the output of the l − 1 layer, xl−1, as the input of the l layer to obtain the
output of the l layer, xl , which can be represented as

xl = Hl xl−1 (1)

For a dense block, each layer obtains additional inputs from all the preceding layers
and passes on its own feature maps to subsequent layers; thus, it connects all layers by
directly matching the sizes of the feature maps with each other. It can be defined as

xl = Hl(x0, x1, . . . . . . , xl−1) (2)

Similarly to the dense block, a dense spectral block is utilized in the spectral domain,
and the input of the current layer is the cascade of all outputs of the previous layer.
Traditional density connectivity uses a two-dimensional CNN to extract features, while the
dense spectral block uses a three-dimensional CNN to extract all features of a spectrum,
which is more suitable for the structural features of HSIs. The p× p neighborhood pixels
of the central pixel are selected from the original HSI data X to generate a 3D cube set. If
the target pixel is at the edge of the image, the value of the missing adjacent pixel is set to
zero. Then, the neighborhood of the image patches around the labeled pixels p× p× L is
obtained and fed into the first part.

We assume that the dense spectral block contains l(l ∈ N∗) layers, and each layer
implements a nonlinear transformation Hl(·). More specifically, Hl(·) is a composite
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function of batch normalization (BN) [43], PReLU [44], three-dimensional convolution,
and dropout [45]. It should be noted that, because dense connections are realized directly
across channels, it is required that the sizes of their feature maps before different layers of
concatenation are the same.

For the dense spectral block, the inputs are patches with a size of p× p× a that are
centered on the labeled pixel selected from the original image. In this block, a 1 × 1 × 7
convolution kernel is used for feature extraction in order to obtain the spectral features.
The number of convolution kernels is 12. The BN layer and PReLU follow after the
convolutional layer. For the dense spatial block, the input samples are patches with a size
of

(
p−k

s + 1
)
×

(
p−k

s + 1
)
× a that are centered on the labeled pixel selected from the first

part after a reshaping operation, where k refers to the convolution kernel size, and s refers
to the stride. In this block, a 3 × 3 × 1 convolution kernel is used to obtain the spatial
features. The number of convolution kernels, the normalization method, and the activation
function are all the same as those for the dense spectral blocks.

This dense connection makes the transmission of spectral–spatial features and gradi-
ents more efficient, and the network is easier to train. Each layer can directly utilize the
gradient of the loss function and the initial input feature map, which is a kind of implicit
deep supervision, so that the phenomenon of gradient disappearance can be alleviated.
The dense convolution block has fewer parameters than a traditional convolutional block
because it does not need to relearn redundant feature maps. The traditional feed-forward
structure can be regarded as an algorithm for state transfer between layers. Each layer
receives the state of the previous layer and passes the new state to the next layer. The dense
block changes the state, but it also conveys information that needs to be retained.

2.3. Spectral–Spatial Self-Attention Block and Fusion Mechanisms

Different spectral bands and spatial pixels have different contributions to HSI clas-
sification. In this study, the self-attention mechanism is adopted in order to focus on the
features that significantly contribute to the classification results and ignore the unimportant
information. According to the feature dependence of the spatial dimension and channel
dimension that are captured by the self-attention mechanism, the spectral and spatial
features extracted from dense blocks are refined and optimized, with more attention being
paid to important features and less attention to unimportant features. Figures 2 and 3 show
the schematic diagrams of the attention blocks. This study designed a residual-like method
that not only alleviates the phenomenon of gradient disappearance but also enhances the
spectral–spatial feature representation, which is essential for the accurate classification
of pixels.

Figure 2. The schematic diagram of the spectral attention block.
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Figure 3. The schematic diagram of the spatial attention block.

For the spectral attention mechanism, the spectral feature map of each high-level
feature can be regarded as a class-specific response. By mining the interdependence
between the spectral feature maps, the interdependent feature maps can be highlighted,
and the feature representations of specific semantics can be improved. The input A is a set
of C feature maps with size p× p× b, where p refers to the patch size, and b is the number
of input channels. X is the spectral attention map with size b × b, which is calculated
directly from the original feature map A. The specific formula for calculating the spectral
attention diagram is

xji =
exp(Ai · Aj)

∑b
i=1 exp(Ai · Aj)

(3)

where xji measures the effect of the ith spectral feature on the jth spectral feature. The
output calculation of the final attention map is

Ej = β∑b
i=1 (xji Aj) + Aj (4)

β represents the scale coefficient, which is initialized with 0 and gradually learns to
assign greater weights. The resulting feature E for each spectral channel is the weighted
sum of all spectral channels’ features and the original spectral features.

For the spatial attention mechanism, by establishing rich contextual relations of the
local spatial features, the broader contextual information can be encoded into the local
spatial features in order to improve the feature representation abilities. The size of input
F is h × h × c in which h refers to p−k

s + 1, and c is the number of input channels. S is
the spatial attention map with size (h× h)× (h× h), calculated from the original spatial
feature map F. The output formulas of the spatial attention diagram and the final attention
map are similar to those of the spectral attention block, as shown in Formulas (5) and (6),
respectively. Among them, B, C, and D represent the feature maps obtained by the three
convolutions, S is the spatial attention map, and F and Z represent the input feature map
and the final output feature map, respectively.

Sji =
exp(Bi · Cj)

∑b
i=1 exp(Bi · Cj)

(5)

Zj = α∑b
i=1 (SjiDj) + Fj (6)

2.4. Strategy for High-Level Spatial Feature Extraction—DCR Block

CNNs are often seen as an effective way to automatically learn abstract features
through a stack of layers. However, there are a large number of mixed pixels in hyperspec-
tral images. One of the problems of a traditional convolution kernel with a fixed size is its
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poor adaptability to unknown changes and its weak generalization ability. Therefore, it is
difficult to fully learn the features of an HSI through only regular convolution. In order to
solve the above problems and ensure that the classification accuracy does not decrease as
the network deepens, a DCR block is proposed. The parameter settings of each layer of
DCR block are shown in Table 1. The process of implementing deformable convolution
is shown in Figure 4. First, a feature map is obtained through a traditional convolutional
layer; then, the result is input to another convolutional layer to obtain offset features, which
correspond to the original output feature and the offset feature, respectively. The output
offset size is consistent with the input feature map size. The dimension of the generated
channel is 2N, which is twice the number of convolution kernels. The original output
feature and the offset feature are simultaneously learned through the bilinear interpolation
backpropagation algorithm. The shape of the traditional convolution operation is regular
and can be represented as

y(p0) = ∑
pn∈<

w(pn) · x(p0 + pn) (7)

where p0 is the pixel of the output feature map, and pn represents the locations in the
enumerated convolution kernel. The deformable convolution is

y(p0) = ∑
pn∈<

w(pn) · x(p0 + pn + ∆pn) (8)

Table 1. Parameter settings of the DCR block of the residual part.

Layer Size

conv2d 3 × 3, 128
conv2d (offset) 3 × 3, 18
deform conv2d 3 × 3, 128

conv2d 3 × 3, 260

Figure 4. The implementation process for deformable convolution.

The offset ∆pn is added to the original position in Formulas (7) and (8). w, x, and
y represent the weight, input feature map, and output feature map, respectively. The
schematic diagram of the original three-layer residual block and the proposed DCR block
are shown in Figure 5a,b. By introducing residual learning into the deep network’s struc-
ture, the generalization performance of the network is improved. In this study, residual
learning was used in two places—one is in the DCR block, and the other is the residual
between the feature map after the self-attention fusion and the DCR block. This can solve
the degradation problem caused by increasing the depth of network and can make the
network easier to optimize. This residual block is divided into two parts: (1) the direct
mapping part and (2) the residual part. The residual part can be represented as
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xl+1 = h(xl) + F(xl , Wl) (9)
Because the number of feature maps of xl and xl+1 is the same, h(xl) is the identity

map, that is, h(xl) = xl , which is reflected as the arc on the right side of Figure 5b; F(xl , Wl)
is the residual part, which consists of two regular convolutions and one deformable
convolution, followed by BN layers and a ReLU layer [46], which corresponds to the part
with convolution on the left side of Figure 5b, where xl and Wl are the input feature map
and weight.

Figure 5. Architectures of (a) the ordinary residual block and (b) the proposed DCR block.

2.5. Optimization Methods

In order to accelerate the training speed, improve the classification accuracy, and
prevent overfitting, some optimization approaches are adopted, including the PReLU
activation function [44], BN, dropout, and cosine-annealing learning rate monitoring
mechanism.

(1) PReLU Activation Function

PReLU is an improvement and generalization of ReLU; its name refers to ReLU with
parameters. The PReLU can be represented as

PReLU(xi) =

{
xi, i f xi > 0

aixi, i f xi ≤ 0
(10)

where xi is the input of the nonlinear activation function of the ith channel, and ai is
the slope of the activation function in the negative direction. For each channel, there is
a learnable parameter for controlling the slope. When updating the parameter ai, the
momentum method is adopted. That is,

∆ai := µ∆ai + lr
∂ε

∂ai
(11)

here, µ is the momentum coefficient, and lr is the learning rate. The weight decay is not
used in the update because it will cause ai to tend to zero. In addition, all values of ai at the
initial moment are equal to 0.25. The Mish [47] is

Mish = x ∗ tanh(ln(1 + ex)) (12)

here, x represents the input of the activation. Moreover, Mish has a smoother gradient
compared to that of ReLU. Figure 6 shows the comparison results of the overall classification
accuracy on each dataset using Mish or PReLU. It can be seen from Figure 6 that the overall
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accuracies on the three datasets with the PReLU activation function are all higher than
those with the Mish activation function. Therefore, PReLU was adopted in this study.

Figure 6. The overall accuracy (%) with different activation functions.

(2) Cosine-Annealing Learning Rate

The learning rate is one of the most important hyperparameters of deep neural net-
works, and it controls the speed of the weight update. A high lr at the beginning of training
is used to quickly approach the optimal value, but if it is not reduced later, it is likely
to update to a point that exceeds the optimal value or oscillate near the optimal point.
Therefore, adjusting the value of lr is a way to make the algorithm faster on the premise of
ensuring accuracy. The cosine-annealing learning rate is utilized to dynamically adjust the
learning rate. It can be represented as

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos(

Tcur

Tmax
π)) (13)

where ηt is the newly obtained learning rate, ηmax is the initial learning rate, ηmin represents
the minimum learning rate, Tcur represents the current number of iterations, and Tmax
represents the maximum number of iterations. In this study, Tmax is set to 10.

(3) Other Optimization Approaches

BN has been widely used in deep neural network training; it can not only accelerate
the convergence speed of the model, but more importantly, it can also alleviate the problem
of scattered feature distribution in the deep network.

During forward propagation, dropout causes the activation value of a certain neuron
to stop working with a certain probability because it does not rely too much on certain
local features, which can make the model more general. A dropout layer [43] is used after
the spatial attention block and the spectral attention block, and p = 0.5.

The early stop strategy estimates the stop loss standard by using the validation loss.
The upper limit is set to 200 epochs. If the loss in the validation set no longer declines for
20 epochs, then the training phase is terminated. Finally, the parameters from the results of
the last iteration are used as the final parameters of the model. The proposed SSAF-DCR
method is described as follows (Algorithm 1).
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Algorithm 1 The SSAF-DCR model

Input: An HSI dataset X and the corresponding label vectors Y.
Step 1: Extract cubes with a patch size of 9× 9× L from X, where L is the number of spectral bands.
Step 2: Randomly divide the HSI dataset X into x1, x2, and x3, which represent the training

data, validation data, and testing data, respectively. Likewise, Y1, Y2, and Y3 are the corresponding
label vector data for x1, x2, and x3.

Step 3: Input x1, x2 and Y1, Y2 into the initial SSAF-DCR model.
Step 4: Calculate the dense blocks according to (2) to initially obtain the effective features.
Step 5: Selectively filter features according to (3)–(5), and (6).
Step 6: Further extract spatial features according to (8) and (9).
Step 7: Adam is used for iterative optimization.
Step 8: Input x3 into the optimal model to predict the classification results.
Output: The classification results.

3. Experimental Results and Analysis
3.1. Dataset

In this study, four classical HSI datasets, i.e., the Indian Pines (IN), the Pavia University
(UP), the Kennedy Space Center (KSC), and the Salinas Valley (SV) datasets, were used to
verify the performance of the proposed method.

The Indian Pines dataset was acquired by the AVIRIS sensor in Indiana. The size of
this dataset is 145 × 145 with 224 bands, including 200 effective bands. There are 16 crop
categories. The Pavia University dataset was obtained by the ROSIS sensors and is often
used for hyperspectral image classification. The sensor has a total of 115 bands. After
processing, the University of Pavia dataset has a size of 610 × 340 with 103 bands and a
total of nine ground features. The KSC dataset was captured by the AVIRIS sensor at the
Kennedy Space Center in Florida on 23 March 1996. The size of this dataset is 512 × 614;
176 bands remain after the water-vapor noise is removed, the spatial resolution is 18 m,
and there are 13 categories in total. The Salinas dataset was taken by an AVIRIS sensor in
the Salinas Valley in California. The spatial resolution of the dataset is 3.7 m, and the size is
512 × 217. The original dataset has 224 bands, and 204 bands remain after removing noise.
This dataset contains 16 crop categories.

In this study, 3% of the samples of the IN dataset are randomly selected as the training
set, and the remaining 97% are used as the test set. In addition, 0.5% of the samples of the
UP dataset are randomly selected as the training set, and the remaining 99.5% are used as
the test set. The selection proportions of the training set and test set of the SV dataset are
the same as those of the UP dataset. For the KSC dataset, 5% of the samples are selected
for training and 95% for the test set. The batch size of each dataset is 32. As is commonly
known, the more training samples there are, the higher the accuracy is. In the next section,
we verify that our proposed method also shows great performance in the case of minimal
training samples. The number of training samples and test samples of different datasets
are listed in Tables 2–5, respectively.

3.2. Parameter Setting and Experimental Results

The experimental hardware platform was a server with an Intel (R) Core (TM) i9–9900K
CPU, NVIDIA GeForce RTX 2080 Ti GPU, and 32 GB random-access memory. The exper-
imental software platform was based on the Windows 10 Visual Studio Code operating
system with CUDA10.0, Pytorch 1.2.0, and Python 3.7.4. All experiments are repeated ten
times with different randomly selected training data, and the average results are given.
The optimizer was set to Adam with a learning rate of 0.0003. The overall accuracy (OA),
average accuracy (AA), and kappa coefficient (Kappa) were chosen as the classification
evaluation indicators in this study. Here, OA represents the ratio of the number of cor-
rectly classified samples to the total number of samples, AA represents the classification
accuracy of each category, and the kappa coefficient measures the consistency between the
results and the ground truth. The performance of the proposed method was compared



Remote Sens. 2021, 13, 3590 12 of 25

with those of some state-of-the-art CNN-based methods for HSI classification, including
KNN [48], SVM-RBF [49], CDCNN [50], SSRN [38], FDSSC [51], DHCNet [26], DBMA [52],
HybridSN [39], DBDA [32], and LiteDepthwiseNet [53], where KNN is a linear model
and SVM_RBF uses radial basis function to solve the nonlinear classification problem.
The above two methods belong to traditional classification methods. Both CDCNN and
DHCNet are 2DCNN models, and other methods, including the proposed method, are
3DCNN models.

Table 2. Number of training and test samples in the IN data set.

Class Numbers of Samples

No Name Training Test

1 Alfafa 3 43

2 Corn–notill 42 1386

3 Corn–mintill 24 806

4 Corn 7 230

5 Grass–pasture 14 469

6 Grass–trees 21 709

7 Grass–pasture–mowed 3 25

8 Hay–windrowed 14 464

9 Oats 3 17

10 Soybean–notill 29 943

11 Soybean–mintill 73 2382

12 Soybean–clean 17 576

13 Wheat 6 199

14 Woods 37 1228

15 Building–grass–trees–drives 11 375

16 Stone–steal–towers 3 90

Total 307 9942

Table 3. Number of training and test samples in the UP data set.

Class Numbers of Samples

No Name Training Test

1 Asphalt 33 6598

2 Meadows 93 18,556

3 Gravel 10 2089

4 Trees 15 3049

5 Painted metal sheets 6 1339

6 Bare Soil 25 5004

7 Bitumen 6 1324

8 Self-Blocking Bricks 18 3664

9 Shadows 4 943

Total 210 42,566
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Table 4. Number of training and test samples in the KSC data set.

Class Numbers of Samples

No Name Training Test

1 Scrub 38 723

2 Willow swamp 12 231

3 CP hammock 12 244

4 Slash pine 12 240

5 Oak/broadleaf 8 153

6 Hardwood 11 218

7 Swamp 5 100

8 Graminoid marsh 21 410

9 Spartina marsh 26 494

10 Cattail marsh 20 384

11 Salt marsh 20 399

12 Mud flats 25 478

13 Water 46 881

Total 256 4955

Table 5. Number of training and test samples in the SV data set.

Class Numbers of Samples

No Name Training Test

1 Brocoli–green–weeds–1 10 1999

2 Brocoli–green–weeds–2 18 3708

3 Fallow 9 1967

4 Fallow–rough–plow 6 1388

5 Fallow–smooth 13 2665

6 Stubble 19 3940

7 Celery 17 3562

8 Grapes–untrained 56 11,215

9 Soil–vinyard–develop 31 6172

10 Corn–senesced–green–weeds 16 3262

11 Lettuce–romaine–4wk 5 1063

12 Lettuce–romaine–5wk 9 1833

13 Lettuce–romaine–6wk 4 912

14 Lettuce–romaine–7wk 5 1065

15 Vinyard–untrained 36 7232

16 Vinyard–vertical–trellis 9 1798

Total 263 53,886

The training samples of the four datasets selected for all methods were the same.
Tables 6–9 list the class-specific accuracy of all the methods for the IN, UP, KSC, and SV
datasets. In addition, among the eleven algorithms, the best results are highlighted in
bold. All of the results are the average results over ten experiments. As can be observed,
the proposed method provided the best OA, AA, and Kappa, with a significant improve-
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ment over the other methods on the four datasets. In Table 6, the results show that the
proposed method has the highest OA value, reaching 96.36%, with gains of 40.75%, 18.78%,
34.16%, 3.04%, 1.57%, 1.17%, 6.58%, 8.9%, 1.04%, and 0.77% over the KNN, SVM-RBF,
CDCNN, SSRN, FDSSC, DHCNet, DBMA, HybridSN, DBDA, and LiteDepthwiseNet
methods, respectively. KNN hardly uses shallow spectral features and ignores rich spatial
features, resulting in poor classification effect. The SVM-RBF method does not utilize
spatial neighborhood information; thus, its OA was 77.58%. However, CDCNN was worse
than SVM-RBF with an OA of more than 15% because the network structure has poor
robustness. The FDSSC method adopts dense connection, which caused it to have an OA
that was over 1.47% greater than that of the SSRN with residual connection. DBMA ex-
tracted features with two branches and a multi-attention mechanism, but the classification
results were still lower than those of FDSSC because the use of too few training samples re-
sulted in serious overfitting. DHCNet introduces deformable convolution and deformable
downsampling, and it fully considers the dependence of spatial context information; its
OA was 0.4% higher than that of FDSSC, and its AA was up to 2% higher than that of
FDSSC. HybridSN network has few parameters, but its structure is too simple, which leads
to insufficient extraction of spectral–spatial information, so its OA value is 8.9% lower
than that of the proposed method. The DBDA network—with dual branches and dual
attention—has a relatively flexible feature extraction structure, so its OA was higher than
those of the aforementioned networks. LiteDepthwiseNet has a slightly longer number
of layers and lacks fine extraction of spectral spatial features. Therefore, the classification
accuracy is slightly lower than that of the proposed method. Because the proposed method
has dense blocks to achieve effective spectral–spatial feature extraction, attention blocks
to selectively filter and aggregate features, DCR block to achieve deep spatial feature
extraction, and a series of optimization methods, the SSAF-DCR framework we proposed
achieves the best performance. For the UP and KSC datasets, the OAs of DBMA were
all lower than those of DHCNet, DBDA, and the proposed method, and the classification
results of other methods in the other three data sets are also similar to the results in Table 6,
as shown in Tables 7 and 8. For the SV data sets with clear category boundaries, as shown
in Table 9, the OA value of LiteDepthwiseNet is only 0.31% less than that of the proposed
SSAF-DCR method, which is all higher than that of the other nine methods. In addition,
the classification results of the object-based HSI method are also compared with those of
the proposed method. For the UP data set, when 50 samples of each class are randomly
selected as training sets, the OA obtained in [11] is 95.33%, AA is 94.23%, and kappa is 0.92;
The OA, an, and kappa of the proposed SSAF_DCR method are 98.39%, 97.26%, and 0.97,
respectively; it is 3.06%, 3.03%, and 0.05 higher than the value in [11]. For SV data set, 10%
are randomly selected as training sets. The OA value obtained by the proposed SSAF_DCR
method is 99.71%, which is 0.45% higher than the OA value in [11]. The classification
maps of different methods on the Pavia University dataset and the Indian Pines dataset
are provided to further validate the performance of the proposed SSAF-DCR network, as
shown in Figures 7–10. It can be seen that the classification maps of the SSAF-DCR network
have less noise, and the boundaries of the objects are clearly defined. Compared with
the other methods, the classification maps of the SSAF-DCR network on the four datasets
are closest to the ground-truth maps. The above experiments prove the effectiveness of
the proposed SSAF-DCR network. However, this method still has some shortcomings.
Since the feature extraction structure of SSAF-DCR contains three different parts, more
discriminative information can be obtained, and the highest accuracy can be obtained
under the minimum training samples. However, the depth of the model is relatively deep,
so the test time is relatively long.
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Table 6. KPI (OA, AA, Kappa) on the Indian Pines (IN) dataset with 3% training samples.

Class KNN
[48]

SVM-RBF
[49]

CDCNN
[50]

SSRN
[38]

FDSSC
[51]

DHCNet
[26]

DBMA
[52]

HybridSN
[39]

DBDA
[32]

LiteDepthwiseNet
[53] Proposed

1 45.95 62.24 11.54 75.29 94.75 95.03 83.17 76.47 94.92 81.41 97.82
2 59.49 76.13 54.60 92.42 91.73 91.97 90.96 76.41 93.75 93.96 96.03
3 47.89 68.59 42.19 90.56 94.40 95.31 92.80 91.32 95.09 94.55 96.39
4 42.63 55.18 37.62 91.57 95.37 94.82 89.14 75.00 93.15 97.21 96.00
5 85.27 88.97 92.41 99.18 98.87 98.69 93.23 84.22 98.72 96.81 99.51
6 85.96 89.64 80.73 97.57 95.70 98.54 96.66 97.96 97.33 98.08 99.09
7 21.74 71.28 38.04 81.26 69.06 69.88 49.34 80.77 64.57 85.24 71.13
8 79.65 94.86 84.78 97.60 100.0 100.0 98.66 93.61 100.0 96.43 100.0
9 12.50 70.03 42.49 90.63 66.70 86.27 51.52 71.43 86.17 91.43 96.90
10 62.72 66.97 49.61 90.33 88.18 92.54 87.52 91.25 92.18 93.29 93.11
11 66.24 74.23 63.68 93.88 98.18 97.78 89.00 88.91 97.64 97.75 97.14
12 43.11 65.67 31.97 89.55 93.45 90.93 77.38 77.73 91.91 91.19 93.58
13 84.30 95.46 83.64 98.63 97.06 99.30 97.73 96.26 98.89 99.41 99.69
14 90.16 97.39 78.92 95.31 96.95 95.19 94.99 91.29 97.07 97.30 97.05
15 49.84 67.90 71.90 89.85 93.20 94.00 83.67 89.21 93.37 89.93 95.13
16 83.23 92.58 93.87 94.55 94.04 96.94 90.68 77.65 97.27 98.85 97.63

OA(%) 55.61 77.58 62.20 93.32 94.79 95.19 89.78 87.46 95.32 95.59 96.36
AA(%) 51.04 77.32 58.00 91.76 91.72 93.57 85.40 84.97 93.25 93.92 95.39
Kappa 49.77 0.7206 0.5612 0.9237 0.9407 0.9452 0.8833 0.8564 0.9461 94.82 0.9585

Test time(s) 6.4 4.7 6.5 31.7 59.2 40.6 32.0 25.8 43.6 75.0 47.1

Figure 7. Full classification maps on the Indian Pines image obtained with the (a) ground truth, (b) KNN (OA = 55.61),
(c) SVM-RBF (OA = 77.58), (d) CDCNN (OA = 62.20), (e) SSRN (OA = 93.32), (f) FDSSC (OA = 94.79), (g) DHCNet
(OA = 95.19), (h) DBMA (OA = 89.78), (i) HybridSN (OA = 87.46), (j) DBDA (OA = 95.45), (k) LiteDepthwiseNet (OA = 95.59),
and (l) proposed method (OA = 96.36).
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Table 7. KPI (OA, AA, Kappa) on the University of Pavia (UP) dataset with 0.5% training samples.

Class KNN
[48]

SVM-RBF
[49]

CDCNN
[50]

SSRN
[38]

FDSSC
[51]

DHCNet
[26]

DBMA
[52]

HybridSN
[39]

DBDA
[32]

LiteDepthwiseNet
[53] Proposed

1 67.61 72.53 85.49 96.24 96.84 97.41 94.42 84.13 96.37 97.10 98.80
2 71.66 79.62 91.35 98.41 97.29 98.69 98.57 96.26 99.04 98.98 100.0
3 40.00 72.85 57.34 87.23 90.33 93.27 95.69 75.16 96.57 94.74 94.46
4 50.74 75.36 97.87 99.11 98.09 98.56 96.22 95.92 98.82 98.47 99.16
5 85.93 62.67 96.09 99.86 97.41 98.72 99.85 95.22 99.68 99.64 100.0
6 63.60 75.99 85.58 95.88 95.32 94.15 97.45 96.48 97.44 97.62 97.95
7 77.22 85.48 67.62 92.33 97.39 97.25 92.47 87.76 98.55 98.77 94.11
8 68.07 71.54 72.36 84.10 80.25 85.30 84.01 76.46 82.14 84.94 88.23
9 58.94 89.75 95.04 99.48 100.0 98.04 94.22 85.76 98.34 98.37 100.0

OA(%) 68.21 81.14 86.89 95.66 94.72 96.29 95.72 92.83 96.47 96.60 97.43
AA(%) 65.97 76.19 83.19 94.74 94.20 95.71 94.76 89.13 96.33 96.74 96.96
Kappa 0.6197 0.7343 0.8236 0.9424 0.9268 0.9496 0.9431 0.8803 0.9531 96.15 0.9659

Test time(s) 41.2 24.3 28.3 57.7 210.2 53.6 86.3 55.4 89.7 170.0 156.1

Figure 8. Full classification maps on the University of Pavia images obtained with the (a) ground truth, (b) KNN
(OA = 68.21), (c) SVM-RBF (OA = 81.84), (d) CDCNN (OA = 86.89), (e) SSRN (OA = 95.66), (f) FDSSC (OA = 94.72),
(g) DHCNet (OA = 96.29), (h) DBMA (OA = 95.72), (i) HybridSN (OA = 92.83), (j) DBDA (OA = 96.47), (k) LiteDepthwiseNet
(OA = 96.60), and (l) proposed method (OA = 97.43).
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Table 8. KPI (OA, AA, Kappa) on the Kennedy Space Center (KSC) dataset with 5% training samples.

Class KNN
[48]

SVM-RBF
[49]

CDCNN
[50]

SSRN
[38]

FDSSC
[51]

DHCNet
[26]

DBMA
[52]

HybridSN
[39]

DBDA
[32]

LiteDepthwiseNet
[53] Proposed

1 90.63 97.83 95.16 99.40 99.29 98.47 99.83 33.78 99.86 99.80 100.0
2 83.32 85.33 73.35 96.85 96.53 96.21 96.33 52.76 98.29 95.92 99.00
3 86.72 76.51 42.63 92.66 88.09 96.34 88.87 51.61 97.44 88.95 97.56
4 42.39 67.83 35.31 84.48 89.77 92.33 79.03 46.31 86.45 88.43 94.12
5 50.25 40.57 12.92 75.10 80.10 83.28 72.34 77.21 87.66 89.00 81.91
6 62.76 79.09 67.33 99.54 100.0 94.09 97.46 28.57 91.94 94.24 100.0
7 44.96 35.78 26.30 95.00 92.52 93.68 84.85 25.99 87.09 95.67 95.73
8 81.43 90.06 77.03 99.44 98.85 97.59 97.18 53.13 99.69 98.71 99.95
9 72.58 70.30 77.41 99.62 99.90 99.83 96.15 28.15 99.79 99.71 99.92
10 90.31 89.44 85.81 100.0 99.67 99.79 95.70 76.27 99.63 99.84 100.0
11 95.92 98.56 99.01 98.73 98.24 98.16 99.29 67.75 98.98 98.83 98.43
12 77.12 92.34 93.89 99.05 99.57 99.63 97.82 66.15 99.30 99.73 99.34
13 88.26 97.90 97.66 100.0 97.27 100.0 100.0 86.91 100.0 99.81 100.0

OA(%) 79.98 84.97 80.91 96.06 96.58 97.41 95.07 63.72 97.59 97.41 98.41
AA(%) 74.35 78.58 67.99 95.37 95.36 96.10 92.68 56.63 95.85 96.04 97.38
Kappa 0.7739 0.8321 0.7871 0.9563 0.9631 0.9739 0.9451 0.5889 0.9732 97.12 0.9823

Test time(s) 2.4 1.1 3.1 9.4 11.8 10.2 13.9 12.8 13.7 30.3 21.2

Figure 9. Full classification maps on the Kennedy Space Center images obtained with the (a) ground truth, (b) KNN
(OA = 79.98), (c) SVM-RBF (OA = 84.97), (d) CDCNN (OA = 80.91), (e) SSRN (OA = 96.06), (f) FDSSC (OA = 97.58), (g)
DHCNet (OA = 97.41), (h) DBMA (OA = 95.07), (i) HybridSN (OA = 63.72), (j) DBDA (OA = 97.59), (k) LiteDepthwiseNet
(OA = 97.41), and (l) proposed method (OA = 98.41).

Table 9. KPI (OA, AA, Kappa) on the Salinas Valley (SV) dataset with 0.5% training samples.

Class KNN
[48]

SVM-RBF
[49]

CDCNN
[50]

SSRN
[38]

FDSSC
[51]

DHCNet
[26]

DBMA
[52]

HybridSN
[39]

DBDA
[32]

LiteDepthwiseNet
[53] Proposed

1 89.44 99.87 36.60 90.69 99.95 94.62 93.48 98.75 100.0 99.95 100.0
2 69.72 97.62 71.96 99.78 99.84 99.81 99.53 99.59 99.78 99.65 99.93
3 84.01 93.09 73.72 90.00 97.57 90.27 96.12 97.56 96.55 97.20 98.33
4 86.78 96.43 91.38 96.52 94.94 93.64 94.09 91.80 94.39 95.42 96.99
5 85.27 94.56 93.39 99.40 99.67 99.53 96.31 97.35 96.50 95.49 97.68
6 98.63 99.50 98.56 99.89 99.66 99.86 99.79 98.55 99.98 99.97 100.0
7 78.11 95.58 93.58 98.08 99.83 99.31 96.44 98.94 98.41 98.10 100.0
8 67.00 70.86 71.42 91.62 97.26 95.28 86.66 93.44 89.69 92.58 92.72
9 95.65 98.41 94.99 99.58 99.70 99.74 99.68 99.75 96.89 99.77 99.86
10 81.97 90.27 80.14 96.34 98.60 98.07 93.83 98.16 94.99 94.18 98.64
11 64.32 79.41 81.78 85.48 96.21 91.93 91.85 92.53 96.13 96.14 96.91
12 88.96 89.06 83.76 96.75 98.58 96.49 99.80 97.18 98.19 96.81 97.43
13 93.76 93.64 93.47 96.59 99.69 94.27 96.92 86.59 99.88 98.31 96.78
14 94.42 92.67 94.15 98.28 98.04 98.40 97.19 96.82 94.41 97.94 99.27
15 75.46 73.05 59.53 74.08 81.03 85.41 87.47 90.62 89.75 91.00 91.49
16 96.04 99.17 98.51 99.88 99.99 100.0 99.43 97.09 100.0 100.0 100.0

OA(%) 82.17 86.45 80.51 90.11 94.60 94.45 92.62 95.05 95.81 96.22 96.53
AA(%) 84.34 91.45 82.31 94.56 97.53 96.04 95.54 95.92 96.59 97.03 97.87
Kappa 80.69 0.8490 0.7815 0.8906 0.9403 0.9463 0.9177 0.9426 0.9521 96.08 0.9614

Test time(s) 47.75 55.5 35.4 120.9 207.5 168.3 181.1 140.8 243.2 440.0 197.5
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Figure 10. Full classification maps on the Salinas Valley images obtained with the (a) ground truth, (b) KNN (OA = 82.17),
(c) SVM-RBF (OA = 88.09), (d) CDCNN (OA = 80.51), (e) SSRN (OA = 90.11), (f) FDSSC (OA = 94.60), (g) DHCNet
(OA = 94.45), (h) DBMA (OA = 92.62), (i) HybridSN (OA = 95.05), (j) DBDA (OA = 95.81), (k) LiteDepthwiseNet (OA = 97.02),
and (l) proposed method (OA = 97.46).

3.3. Efficiency of the Attention Fusion Strategy

The purpose of feature fusion is to merge the features extracted from the image into a
feature that is more discriminative than the input feature. According to the order of fusion
and prediction, feature fusion is classified into early fusion and late fusion. Early fusion
is a commonly used classical feature fusion method, that is, in existing networks (such
as the Inside–Outside Net (ION) [54] or HyperNet [55]), concatenation [56] or addition
operations are used to fuse certain layers. The residual-like feature fusion strategy designed
in this study is an early fusion strategy that directly connects two spectral and spatial scale
features. The sizes of the two input features are the same, and the output feature dimension
is the sum of the two dimensions. Table 10 shows an analysis of the effects of using the
fusion strategy or not. The bold values in Table 10 are the OA values obtained on the four
data sets by the proposed method after using the fusion strategy. It can be seen that the
OA values on each data set have increased by more than 2% with fusion. The results show
that the effect on the classification of hyperspectral images is significantly improved after
feature fusion compared with that without the feature fusion strategy.
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Table 10. Effective analysis of the attention blocks fusion strategy (OA%).

Strategy IN UP KSC SV

Without fusion 93.73 95.03 94.25 93.69
With fusion 96.36 97.43 98.41 96.53

3.4. Parameter Analysis

In this section, the impacts of different spatial patch sizes on the classification accuracy
and the impacts of different training samples on the performance of the proposed method
are analyzed.

(1) It is well known that a target spectral pixel and its surrounding spatial neighbor-
hood usually belong to the same category. Therefore, the spatial size of the input cube
has a great impact on the classification performance. If the spatial size of the input cube is
too small, the receiving field for feature extraction will be insufficient, resulting in a loss
of information and reduced classification performance; if it is too large, the local spatial
features cannot be effectively extracted, and the computational cost and memory demand
will be drastically increased. Figure 11 shows the OA values of the four datasets with
different patch sizes, which varied from 5 × 5 to 9 × 9 with an interval of 2. In Figure 11, as
the spatial size of the input cube increases, the OAs of the IN, UP, and KSC datasets begin
to decline after 7 × 7, where they reach the highest values of 96.36%, 97.42%, and 98.41%,
respectively. For the SV dataset, the OA keeps increasing as the spatial size of the input
cube increases. Through the analysis of the experimental results on the four datasets, it
was found that the 7 × 7 spatial patch size was able to provide the best performance, so
this study used 7 × 7 as the spatial input size.

Figure 11. Overall accuracy (%) of input patches with different spatial sizes on the four datasets.

(2) Figure 12a–d shows all of the methods that were investigated with different
numbers of training samples. Specifically, training samples of 1%, 5%, 10%, 15%, and
20% of each class of the IN and KSC datasets were randomly selected from the labeled
samples, and 0.5%, 5%, 10%, 15%, and 20% of the training samples in each category of
the UP and SV datasets were randomly selected from the labeled samples. It can be seen
from Figure 12 that the proposed SSAF-DCR method obtains the highest OA values on
all four data sets under the condition of minimum training samples. With the increase
of training proportion, the OA values of all methods are improved to varying degrees,
and the performance differences between different models are also reduced, but the OA
value of the proposed method is still the highest. In general, the 3D-CNN-based models
(including SSRN [38], FDSSC [51], DBMA [52], DBDA [32], and the proposed model)
showed better performance compared to the other methods. Among them, the proposed
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SSAF-DCR method always had the optimal OA value under the different training sample
ratios. Therefore, our proposed method has a stronger generalization ability when training
on a hyperspectral dataset with limited samples.

Figure 12. Classification results (OA%) with different amounts of training samples on four datasets. (a) IN. (b) UP. (c) KSC.
(d) SV.

Figure 13 shows the confusion matrix created with the proposed SSAF-DCR method
on the IN, UP, KSC, and SV datasets, respectively. The accuracy and loss curves of the
SSAF-DCR training and verification sets for the IN, UP, KSC, and SV datasets are shown in
Figure 14. For the UP and SV datasets, there were large fluctuations in the losses of the
validation set, but the SSAF-DCR model converged quickly at the beginning of the training
process, so good results were still achieved for the training and validation accuracy.
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Figure 13. Confusion matrix using the proposed method for (a) IN, (b) UP, (c) KSC, and (d) SV.

3.5. Ablation Experiments of Three Kinds of Blocks

The proposed method uses three modules: dense blocks, attention blocks, and DCR
block. In order to verify their respective performance, in this paper, the network composed
of two dense blocks is taken as the baseline network. On this basis, attention blocks
(abbreviated as A) and DCR block (abbreviated as D) are respectively added to form the
baseline + A network and baseline + D network. Attention blocks and DCR block are
also together added to the baseline network to form a baseline + A+ D network (i.e., the
proposed SSAF-DCR network). The ablation experiments and analyses of these three
networks were performed on four data sets as shown in Figure 15. It can be seen that
because the DCR block has made effective adjustments to the receptive field, it has better
adapted to spatial changes and further extracted spatial features; while the attention block
has selectively screened and aggregation the previously extracted features, so only adding
the DCR block has an improvement in the OA value on the four data sets compared to only
adding the attention block. Due to the good combination of the advantages of attention
block and DCR block in feature extraction, it is obvious that the baseline + A + D network
(i.e., the proposed SSAF-DCR network) composed of the two achieves the best classification
accuracy on the four datasets.
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Figure 14. Accuracy and loss function curves of the training and validation sets for (a) IN, (b) UP, (c) KSC, and (d) SV.

Figure 15. Schematic of the ablation results about attention blocks and DCR block on the four data sets.

4. Conclusions

In this study, a novel lightweight SSAF-DCR method was proposed for hyperspectral
image classification. The SSAF-DCR method first uses a dense spectral block for effective
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spectral domain feature extraction. Secondly, a spectral attention block is used to focus on
more interesting features and ignore unimportant information. Again, the dense spatial
block can extract as much information as possible in the spatial domain. It also uses the
spatial attention block to selectively filter and discriminate among features. Moreover, a
residual-like fusion strategy was designed to fuse the effective features extracted from the
spectral domain and the spatial domain, which further enhances the feature representation.
In SSAF-DCR, a DCR module was also designed in order to combine the traditional and
deformable convolution and embed them into the residual structure to adapt to unknown
spatial changes and enhance the generalization ability. These designs are integrated into
a unified end-to-end framework to improve the HSI classification performance. The
experimental results prove the effectiveness of the SSAF-DCR method.
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